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Abstract. The numerical evaluation of coherent-state path integrals for quantum dynamical
problems is discussed for one-dimensional examples. To propagate an initial state, we use
the normal and antinormal ordered coherent-state path integrals combined with a split-operator
technique dividing the Hamiltonian into harmonic and anharmonic parts. For numerical purposes
integrations must be approximated by quadrature formulae. This leads to a matrix multiplication
scheme which is systematically tested for the double-well and Morse potentials. The method is
accurate for propagation times much longer than the natural time scale of the system, and it allows
for short as well as long time steps without loss of stability.

1. Introduction

Ever since its invention 50 years ago, path integration has been an important tool of quantum
physics. Most of the applications of path integration are based on the real-space path
integral involving the Feynman–Kac formula for integration over pathsEr(t) in configuration
space. Apart from the traditional path integration in configuration space there is the path
integration using coherent states (Klauder and Skagerstam 1985, Perelomov 1986). Although
the coherent-state path integral has made it into the textbook literature (Schulman 1981), it is
only infrequently applied as a numerical tool (Adachi 1989, Marchioro 1990, Marchioro and
Beck 1992, Caratzoulas and Pechukas 1996).

In a recent paper (Burghardtet al 1998) we have demonstrated that coherent-state path
integration may be employed for the numerical evaluation of partition functions and other
quantities in equilibrium statistical mechanics, for temperatures ranging from zero way up
into the regime where quantum effects are negligible. Here we want to discuss real-time
applications as opposed to the imaginary-time applications discussed in our previous paper;
that is, we are dealing with the time evolution operator instead of the density operator. There
exists a large variety of techniques† for propagating a given initial state under the influence
of a given Hamiltonian. A very popular class of propagation algorithms are the so-called
split-operator techniques (Feitet al 1982). These techniques are based on a decomposition of
the time evolution operator into kinetic and potential parts which are most easily handled in
the momentum and position representations, respectively. The necessary frequent switching
between these two representations can be handled efficiently by fast Fourier transform methods.
In this paper we want to introduce split-operator ideas into the numerical evaluation of coherent-
state path integrals (CSPIs), by dividing the given Hamiltonian into harmonic and anharmonic

† See, for example, several contributions toComput. Phys. Commun.63 (1991), special issue on Time-Dependent
Methods for Quantum Dynamics, or Kosloff (1994), Leforestieret al (1991).
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parts. Our method will then be able to exploit the trivial time evolution of a coherent state in a
harmonic oscillator in the same way as the conventional split-operator techniques exploit the
trivial free time evolution of a plane-wave state. In fact, a division of the Hamiltonian into
harmonic and anharmonic parts has been suggested earlier (Mak and Andersen 1990, Prates
Ramalhoet al 1993) in the context of real-space path integration, but we think that the idea
fits much more naturally into the context of coherent-state path integration. The reason for
this belief is easily understood: in the context of real-space path integration the usual quantity
to be studied is the matrix element of the propagator (or time evolution operator) between two
position eigenstates. A position eigenstate contains components of arbitrarily high momentum
which travel at arbitrarily high speed. Consequently the propagator matrix element does not
decay as a function of distance, but it oscillates progressively faster at larger distances. This
leads to the well known problems concerning integrals with rapidly oscillating integrands.
This free-particle scenario does not change fundamentally in the presence of a potential†.

In contrast to a position eigenstate, a coherent state is a smooth minimum-uncertainty
Gaussian wavepacket, which in a harmonic oscillator potential neither spreads nor picks up
rapidly varying phase factors. The time dependence of the harmonic propagator matrix element
between coherent states consequently is completely trivial. This changes as anharmonicities
are added, but not fundamentally, as we shall see by way of example below. The coherent state
propagator matrix element thus is a complex function with smoothly decaying amplitude and
slowly varying phase.

We consider the matrix element of the time evolution operator between given initial and
final states. For numerical purposes the path integral representation of that quantity must be
approximated by anN -dimensional integral (whereN is often called the Trotter number). The
integrand is a product of matrix elements of time evolution operators for individual short time
intervals. One approximation of crucial importance in any numerical path integral scheme then
is the approximate calculation of these short-time matrix elements, which we will achieve by
splitting the Hamiltonian into a harmonic part, which can be treated exactly, and an anharmonic
part. With this split-operator technique it is possible to use efficient high-order approximations
for the anharmonic part of the integrand. The remaining important approximation is the
numerical evaluation of theN integrations involved. If that is done via quadrature formulae
with fixed abscissas, the path integration can be mapped to an iterated matrix multiplication‡. A
possible alternative§ is the stochastic (Monte Carlo (MC)) evaluation of the multidimensional
integral approximating the path integral. Apart from some remarks (section 6), however, we
will not treat MC methods here but concentrate on the matrix multiplication approach.

An early numerical application of CSPIs to quantum dynamics is the paper by Adachi
(1989), discussing the semiclassical CSPI for the kicked rotator.

In this paper we want to demonstrate that coherent-state path integration as outlined
above is a useful numerical tool in quantum dynamics, and we discuss the influence of various
technical parameters.

The plan of the paper is as follows. In section 2 we fix the notation for the CSPI. In section 3
we introduce the split-operator technique. In section 4 we describe a matrix multiplication
scheme, which we use in section 5 to calculate CSPIs for some simple anharmonic systems,
namely a particle in the double-well potential, and in the Morse potential. In this section we
also discuss the influence of various technical parameters. Section 6 concludes the paper.

† We leave aside the special case of the harmonic oscillator where the propagator is a strictly periodic function of
time and thus an arbitrary initial state refocuses periodically.
‡ See Burghardtet al (1998) and references therein: e.g. Storer (1968).
§ See Marchioro and Beck (1992) for an early application of MC methods to CSPIs.
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2. Coherent-state path integrals

Throughout this paper, we will consider a standard Hamiltonian

H = T + V = P 2

2m
+ V (Q) (1)

for a system with one degree of freedom, described by the momentum operatorP and the
position operatorQ.

A coherent state|α〉 may be defined by means of harmonic oscillator creation and
annihilation operatorsa† anda,

a := 1√
2h̄

(√
mωQ + i

1√
mω

P

)
(2)

through

|α〉 := exp(αa†− α∗a)|0〉 (3)

where |0〉 is the normalized oscillator ground state, and the exponential is a displacement
operator.

Two basic facts about coherent states are essential in our context. First,|α〉 is an eigenstate
of the annihilation operator,

a|α〉 = α|α〉 (4)

(note that the frequencyω, and hence the characteristic length scale(h̄/mω)−1/2, is completely
arbitrary and can be used as an adjustable parameter). The second feature is the resolution of
unity ∫

d2α

π
|α〉〈α| = 1I (5)

(d2α := d Reα d Imα).
It is also noteworthy that the coherent states are normalized, but not orthogonal

〈α|α′〉 = exp

(
−|α|

2

2
− |α

′|2
2

+ α∗α′
)
. (6)

The position space representation of a coherent state is given by

〈x|α〉 = π−1/4 exp[− 1
2(x

2 + α2) +
√

2xα − 1
2|α|2]. (7)

Before defining CSPIs, we introduce the normal and antinormal symbols of an operator
A. The normal symbolA+(α, α

′) is defined by

A+(α, α
′) := 〈α|A|α

′〉
〈α|α′〉 . (8)

An obvious way to evaluate it is by normal-ordering the operatorA (i.e. writingA in terms
of a† anda so that in every term alla† stand to the left of alla) and then (by equation (4))
replacinga† by α∗ anda by α′. The antinormal symbolA−(α) is defined by

A =
∫

d2α

π
|α〉〈α|A−(α) (9)

and can be obtained by bringingA into antinormal form (a left of a†) and replacinga by α,
a† by α∗. Note that in contrast toA+, A− depends only on one complex argument. Whereas
A+(α, α

′) exists for all practically relevant operators,A−(α) is a much more delicate function
and it exists only for a restricted class of operators.
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We now can define the discretized CSPI representation for the matrix element of the
propagator between coherent states in two different ways. We first define the normal CSPI
(NCSPI)(α0 ≡ α, αN+1 ≡ α′)

U(α, α′;N) :=
∫

d2α1

π
. . .

∫
d2αN

π

N+1∏
ν=1

〈αν−1|αν〉
N∏
ν=1

(
exp

(
− it

h̄N
H

))
+

(αν−1, αν). (10)

Similarly, the antinormal CSPI (ACSPI) is defined as follows:

U(α, α′;N) :=
∫

d2α1

π
. . .

∫
d2αN

π

N+1∏
ν=1

〈αν−1|αν〉
N∏
ν=1

(
exp

(
− it

h̄N
H

))
−
(αν). (11)

More general definitions of a CSPI are also known (Leschke 1979), but we restrict ourselves
to the NCSPI and ACSPI defined above and therefore do not discuss the generalization here.

We conclude this general section by pointing out that the antinormal symbol of a Hermitian
HamiltonianH is a real-valued function.

3. Split-operator methods

In general, neither the normal symbol nor the antinormal symbol of the propagator
exp(−itH/h̄) can be found explicitly. Also, though it might be possible to calculate the
series expansion of the propagator to any desired order by ordering powers ofH , this way is
for many Hamiltonians too tedious. Therefore we divide the Hamiltonian (equation (1)) into
two parts:H = H0 + Ṽ (Q), whereH0 = h̄ω(a†a + 1

2) is the Hamiltonian of the harmonic
oscillator andṼ (Q) = V (Q)− mω

2h̄ Q
2, and apply the Zassenhaus formula

exp

[
− i

h̄
t (H0 + Ṽ )

]
= exp

(
− it

2h̄
H0

)
exp

(
− i

h̄
t Ṽ

)
exp

(
− it

2h̄
H0

)
+O(t3). (12)

In the context of configuration space path integration it would look more natural to decompose
the Hamiltonian into a kinetic termT and a potential oneV (Q). That decomposition is well
known in the field of wavepacket propagation and is called split-operator technique (Feitet al
1982). In our case the splitting of the Hamiltonian into a harmonic and an anharmonic part
has the advantage that the harmonic time evolution of a coherent state is simple:

exp

(
− i

h̄
tH0

)
|α〉 = e−iωt/2|e−iωtα〉 (13)

that is a rotation of the state|α〉 in the complex plane and multiplication by a phase factor.
Together with equation (10) (NCSPI) the propagation of a coherent state|α〉 by a time

step1t = t/N is given by

e−
i
h̄
t
N
H |α〉 '

∫
d2α′

π
|α′〉〈α′|e− i

h̄
t

2N H0e−
i
h̄
t
N
Ṽ e−

i
h̄

t
2N H0|α〉

= e−i ωt2N

∫
d2α′

π
|α′〉

(
exp

(
− it

h̄N
Ṽ

))
+

(α′e+i ωt2N , αe−i ωt2N )〈α′ e+i ωt
N |α〉. (14)

The application to the ACSPI is slightly different:

e−
i
h̄
t
N
H |α〉 ' e−

i
h̄

t
2N H0

(∫
d2α′

π
|α′〉〈α′|

(
exp

(
− it

h̄N
Ṽ

))
−
(α′)

)
e−

i
h̄

t
2N H0|α〉

= e−i ωt2N

∫
d2α′

π
|α′〉

(
exp

(
− it

h̄N
Ṽ

))
−
(α′e+i ωt2N )〈α′e+i ωt

N |α〉. (15)



Numerical evaluation of coherent-state path integrals 2079

The propagation of an arbitrary state|ψ〉 can be effected in an obvious way by recalling
that due to the completeness of the coherent states|ψ〉 can be written

|ψ〉 =
∫

d2α

π
|α〉〈α|ψ〉. (16)

In both cases the remaining problem is to evaluate the normal or antinormal symbol of
exp(− it

h̄N
Ṽ ). As an approximation of this symbol we use the symbol of the series expansion

of the exponential up to a certain order, assuming that the symbol of any power ofṼ is known.
This is possible, for example, if̃V is a polynomial inQ and exp(Q). In the figures and tables
relating to the numerical examples to be discussed below we always state the order of the
expansion.

At this point we would like to relate our work to important earlier papers (Marchioro
1990, Marchioro and Beck 1992) on CSPI. Whereas Marchioro (1990) contains a rather
detailed discussion of the general properties of ACSPI and NCSPI, Marchioro and Beck (1992)
suggest an approach similar to ours. The strategy suggested there is to write the Hamiltonian
asH = H0 + VI with H0 a quadratic form in coordinates and momenta, andVI a function
of the coordinates only. (This is similar to our approach, but we suggest always using the
harmonic oscillator forH0, because the corresponding coherent-state matrix elements are
known analytically and their numerical evaluation is trivial.) After a Trotter decomposition
the exponential ofVI is written in the antinormal representation, but the antinormal symbol
(called the ‘Glauber function’ in Marchioro and Beck (1992)) is only calculated tofirst order
in the time increment. In contrast, we suggest using ahigher-order approximation of that
quantity in order to achieve higher accuracy. The results (to be presented in section 5 below)
show that a higher-order expansion is indeed very worthwhile: whereas in the application
of Marchioro and Beck (1992) (particle in a potential with cubic anharmonicity) the errors
become prohibitively large after about two harmonic oscillation periods, we have achieved
numerically stable and accurate propagation over up to several thousand periods.

One important difference between this paper and Marchioro and Beck (1992) must be
pointed out, however. We employ a ‘deterministic’ numerical evaluation scheme (to be
explained momentarily), whereas Marchioro and Beck employ MC techniques. We would
like to stress that our approach could also be combined with MC techniques: as pointed out
above, the quantities which have to be evaluated are similar to those in Marchioro and Beck
(1992), apart from a higher-order expansion. See also section 6 for some further comments
on MC methods.

4. Numerical path integration

For nontrivial Hamiltonians the integrations in equations (14) and (15) have to be performed
numerically. Using a quadrature formula∫

d2α

π
f (α) ≈

∑
j

wjf (αj ) (17)

with fixed sets of abscissasαj and weightswj > 0, and defining a matrixP(t/N) and a vector
v by their elements (here the NCSPI)

Pij := √wiwje−i ωt2N 〈αie+i ωt
N |αj 〉

(
exp

(
− it

h̄N
Ṽ

))
+

(αie
+i ωt2N , αj e−i ωt2N ) (18)

and

vj := √wj 〈αj |ψ〉 (19)
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the discretized version of a single time step propagation becomes a matrix–vector multiplication

v′i := √wi〈αi |e− it
h̄N
H |ψ〉 '

∑
j

Pij (t/N)vj . (20)

The vectorv′ represents the wavepacket propagated by the timet/N . The corresponding
matrixP(t/N) for the ACSPI is straightforward:

Pij = √wiwje−i ωt2N 〈αie+i ωt
N |αj 〉

(
exp

(
− it

h̄N
Ṽ

))
−
(αie

+i ωt2N ) (21)

and equation (20) remains the same.
By squaring the matrixP(t/N) one gets a new propagatorP 2(t/N) with a doubled time

step 2t/N (which is a better approximation to the true propagator thanP(2t/N)). By iteratively
squaring the matrixn times, one gets a propagator with an effective time step1t ′ = 2nt/N
which may be quite long (see the examples in the next section). IfNp denotes the number of
points in the grid, a single propagation step requiresO(N2

p) operations, whereas squaring a
matrix is a much more costlyO(N3

p) step. On the other hand, this singleO(N3
p) step cuts the

total number of necessaryO(N2
p) steps in half. Obviously this procedure becomes favourable

if the states at intermediate times are not of interest and if the total overall propagation time is
very long. (This may be due to either very long intrinsic time scales in the problem or to the
necessity to propagate many different initial states in a statistical simulation (Saalfrank 1996).)
However, in squaring the propagator matrix repeatedly, some care has to be applied in order
to avoid numerical instabilities due to accumulation of roundoff errors. In our calculations,
we have set matrix elements equal to zero if|〈αiei ωt

N |αj 〉|2 < ε, and we have also set vector
elements equal to zero after every propagation step if|vi |2 < ε; we have usedε = 10−12.
Of course, the appearance of ‘explicit zeros’ can be used to reduce the number of operations
which actually have to be performed in the next matrix multiplication or propagation step,
which typically reduces the number of multiplications by 20–30%.

Before one can start with matrix–vector multiplication one has to choose a suitable
quadrature formula (17). We treat the real and imaginary parts of the integral separately
by one-dimensional, equidistant, symmetric quadrature formulae:∫

dx f (x) '
2M∑
j=0

1f (xj ) (22)

with xj = (j −M)1. The complex quadrature becomes∫
d2α

π
f (α) ' 1

π

2M∑
r=0

1

2M∑
s=0

1f (xr + ixs) (23)

which can be put into the form of equation (17) by renumbering

αr+(2M+1)s = xr + ixs r, s = 0, . . . ,2M (24)

andwj = 12/π ; the number of grid points is thusNp = (2M + 1)2.
We have fixed the mesh size1 according to the following observation. The scalar product

〈α|α′〉 = 〈x+iy|x ′+iy ′〉 (6) contains an oscillatory factor exp i(xy ′−yx ′) along with Gaussian
factors. The real and imaginary parts of successiveα variables in the discretized CSPI thus are
related by a Fourier-transform-like operation; they exchange their roles in each integration step
and consequently should be treated on the same footing. A discretized finite-bandwidth Fourier
transform (with kernel exp ixy) between two variables, each capable of 2M + 1 symmetrically
and equidistantly distributed values (x = µ1x, y = µ1y; −M 6 µ 6 M) implies a
consistency relation between the spacings1x and1y, namely

π = xmax1y = M1x1y. (25)
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In view of the equivalence betweenx andy discussed above, the natural choice then is

1x = 1y = 1 =
√
π

M
(26)

increasingM thus means both increasing (∼M) the size of the total area covered by the grid
and decreasing (∼M−1) the area of each mesh†.

Before considering some examples it is useful to look at our quadrature formula from
another point of view. Since John von Neumann’s times (Perelomov 1986) it has been known
that any set of coherent states{|αj 〉} with αj on an infinite square grid on the complexα-
plane with a mesh size1 6 √π is overcomplete, that means a resolution of unity is possible
though not necessarily in the form12/π

∑
j |αj 〉〈αj |. Recently Zak (1996) pointed out in

an analytical study that for a decreasing mesh size12/π
∑

j |αj 〉〈αj | approaches the unit
operator. Considering this, our quadrature formula also derives directly from a discrete set of
coherent states.

5. Numerical examples

In this section we present some numerical examples to demonstrate how the matrix
multiplication method (section 4) together with the split-operator method works. Our examples
are a double-well potential

V (Q) = gm
2ω3

h̄

(
Q− x0

√
h̄

mω

)2(
Q + x0

√
h̄

mω

)2

(27)

and the Morse oscillator

V (Q) = Ah̄ω(1− e−λ
√
mω/h̄Q)2 (28)

whereg, x0,A andλ are dimensionless parameters. While the former is of interest due to the
small energy splitting of the two lowest eigenstates, the latter is often used as a model potential
for the vibrations of molecules (Braunet al 1996). The minima of the double-well potential
are situated at the positions±x0

√
h̄/mω, the minimum value of the potential energy is zero,

and the frequency of small classical oscillations about the minima is� = 2x0
√

2gω where
ω is the natural frequency of the harmonic oscillator used to define the coherent states. The
minimum of the Morse potential is located at zero position and energy, and the small oscillation
frequency is� = λ√2Aω. By rescaling it is always possible to choose the parameter values
such that� = ω (cf the comment after equation (4)).

In all examples discussed below we use coherent states as initial states|ψ(t = 0)〉 = |α〉
for someα ∈ C; of course, more general states can be represented as linear combinations of
coherent states, thus our choice means no restriction of generality. (In fact, an initially coherent
state quickly ceases to be coherent under the influence of an anharmonic potential.)

As a simple test for our method we calculated the autocorrelation function〈ψ(0)|ψ(t)〉
which possesses the spectral representation

〈ψ(0)|ψ(t)〉 =
∑
m

|〈m|ψ(0)〉|2e−iEmt/h̄ (29)

where|m〉 are the eigenvectors of the Hamiltonian. The energy eigenvalues can be obtained
from (29) by Fourier transformation, with a spectral resolution inversely proportional to the total
propagation time. We also calculated the expectation values for position〈x〉(t) and momentum

† We also used a Gauss–Hermite quadrature formula, but we could not see any significant difference to the equidistant
quadrature results.
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〈p〉(t) and their variances (12x = 〈x2〉 − 〈x〉2 and12p = 〈p2〉 − 〈p〉2, respectively) as
functions of time. The expectation values〈x〉 and〈p〉 can be calculated from the expectation
value of the annihilation operator〈a〉

〈x〉(t) =
√

2h̄

mω
Re〈a〉(t) (30)

〈p〉(t) =
√

2h̄mω Im〈a〉(t). (31)

Similarly 〈x2〉 and〈p2〉 follow by antinormal ordering

〈ψ(t)|x2|ψ(t)〉 = h̄

mω

∫
d2α

π
〈ψ(t)|α〉〈α|ψ(t)〉

(
2 Re2 α − 1

2

)
(32)

〈ψ(t)|p2|ψ(t)〉 = h̄mω
∫

d2α

π
〈ψ(t)|α〉〈α|ψ(t)〉

(
2 Im2 α − 1

2

)
. (33)

As unit of time we choose 1/ω, so the oscillator period isT = 2π . Distances are measured

in units of
√

2h̄
mω

, momenta in units of
√

2h̄mω.

5.1. Double-well potential

In order to give an impression of the most important quantity involved, namely the propagator
matrix element〈α| exp(−itH/h̄)|α′〉, we show that quantity as a function ofα in figure 1 for
fixedα′ = 1.71 andt = 4π , for the double-well potential (27). The height coordinate is the
modulus of the matrix element. We have visualized the phase in the underlying grey scale; the
darkest grey corresponds to phase±π , white signifies phase 0. The double-well nature of the
potential is clearly represented by a dominant maximum on the right and a shoulder on the left.
Outside the classically accessible region of phase space the propagator decays rapidly. It is
important to note that the phase of the propagator varies only very slowly in the region where
its magnitude is appreciable and still not very rapidly in the outer regions where the magnitude
is small anyway. In comparison, real-space propagators are notorious for being much less well
behaved. The free-particle propagator, for instance, is proportional to exp(im(x − x ′)2/2h̄t)
and thus oscillates progressively faster asx − x ′ grows. The taming of these oscillations by
sophisticated mathematical approximation techniques has involved a large amount of work by
several groups†. The coherent-state propagator, in contrast, is smooth by nature.

At this point we would like to point out an additional benefit of the coherent-state
representation. For an arbitrary pure quantum state|ψ〉, the Husimi density (Takahashi 1989,
Cahill and Glauber 1969)ρ(α) := |〈ψ |α〉|2 is a phase space density which yields insight into
the quantum dynamics in the classical framework of phase space. The Husimi density shows
precisely the amount of phase space structure allowed by the uncertainty relation, in contrast
to the popular Wigner distribution (Cahill and Glauber 1969, Wigner 1932, Louisell 1973)
which displays violent oscillations between positive and negative values on phase space scales
smaller than the uncertainty limit. (In fact, the Husimi density can be obtained from the Wigner
function by a Gaussian smoothing (Cartwright 1976) procedure.) The modulus-squared of the
quantity shown in figure 1 is the Husimi density of the state resulting from the initial|α′〉 after
t = 4π . Thus propagation via coherent states yields at any intermediate time the valuable
phase space information contained in the Husimi density‡.

We now discuss some examples of initially coherent states propagated in the double-well
potential. Because of the symmetry of the double-well potential, all eigenfunctions are either

† Makri (1995) and references cited therein; Mak and Egger (1996), and other contributions therein.
‡ In fact, the formulae (30)–(33) can be viewed as averages of phase space functions with respect to the Husimi
density.
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Figure 1. Double-well potentialV (x) = g(x2 − x2
0)

2 with g = 1
50 and x0 = 5

2 (energies
are measured in units of ¯hω, lengths in units of

√
h̄/mω). The propagator matrix element

U(α, α′) = 〈α|e−itH/h̄|α′〉 for α′ = 1.71 andt = 4π is shown. The height coordinate is the
modulus of the matrix element. We have visualized the phase in the underlying grey scale; the
darkest grey corresponds to phase±π , white signifies phase 0. (It should be noted that the grey
scale seems to suggest a height variation, in particular away from the centre of the figure; however,
a closer look at the grid lines reveals that this is an optical artifact.) The double-well nature of
the potential is clearly represented by a dominant maximum on the right and a shoulder on the
left. Outside the classically accessible region of phase space the propagator decays rapidly. It is
important to note that the phase of the propagator varies only very slowly in the region where its
magnitude is appreciable and still not very rapidly in the outer regions where the magnitude is small
anyway. Technical data:M = 13, NCSPI,1t = 2π/512,1t ′ = 41t , fourth-order expansion.
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Figure 2. Double-well potentialV (x) = g(x2 − x2
0)

2

with g = 1
50 andx0 = 5

2 (energies are measured in units
of h̄ω, lengths in units of

√
h̄/mω). Main plot: real part

ReA(ω) of the Fourier transform of the autocorrelation
function〈ψ(0)|ψ(t)〉with initial state|ψ(0)〉 = |α = 0〉.
Eigenvalues of the double-well potential are marked by
♦; only eigenvalues belonging to even states appear in
the spectrum, because the initial state is even. The total
propagation time isT = 512π , therefore the spectral
resolution is1ω = π/512≈ 0.0061. Inset: expectation
value〈x〉 is—as it should be—constant. Technical data:
M = 13, NCSPI,1t = 2π/512,1t ′ = 41t , fourth-
order expansion.

symmetric or antisymmetric. It follows that, if one starts with a symmetric or antisymmetric
state, the time propagation preserves this symmetry, because only eigenfunctions of the same
symmetry contribute to the state. In figure 2 the spectrum of the autocorrelation function is
shown for an initial state|ψ(t = 0)〉 = |0〉. This means that the initial state is symmetric.
In agreement with the above arguments, only even eigenvalues can be seen in the spectrum.
The expectation value〈x〉 of the position operator is precisely zero over a very long time (see
inset of figure 2), which indicates that our method is stable. Of course this does not mean
that the state is stationary; for example its width oscillates quasi-periodically. Figure 3 shows
the expectation value〈x〉(t) and the standard deviation1x :=

√
12x for the initial state
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Figure 3. Double-well potential (see figure 2 for
parameters). Expectation value ofx with initial state
|ψ(0)〉 = |α = 5/

√
8〉 (full curve). The tunnelling time

is about 50 time units. The uncertainty1x (dotted curve)
is smallest whenever the expectation value〈x〉 comes
close to one of the minima of the potential, and reaches a
maximum whenever〈x〉 is ‘below the potential barrier’.
The potential is also shown schematically. Technical
data: M = 13, NCSPI,1t = 2π/512,1t ′ = 321t ,
fourth-order expansion.

Figure 4. Double-well potential (see figure 2 for
parameters). Expectation value ofx with initial state
|ψ(0)〉 = |α = 2〉. Two different effective time steps
are used:1t ′ = 321t (·), 1t ′ = 10241t (×); lines
connecting the symbols are to guide the eye. Both data
sets coincide at equal sampling times, indicating that
repeated matrix squaring does not harm the accuracy. The
larger effective time step corresponds to two periods of
the harmonic oscillation frequency about the potential
minima. Technical data:M = 13, NCSPI,1t =
2π/512, fourth-order expansion.

|α = 5/
√

8〉 centred at one of the potential minima. The expectation value moves back and
forth between the two wells in a characteristic timeτ . This is a tunnelling motion, because the
total energy〈H 〉 = 0.515 is smaller than the height of the barrier (V (0) = 0.8). The localized
wavepacket does not tunnel as a compact object, but it rather expands while the expectation
value moves to the maximum of the potential and contracts while the expectation value moves
to the other minimum. The difference1ω = 0.06 of the two lowest eigenvalues gives the
tunnelling timeτ for a wavepacket moving from one well to the other:

τ = π

1ω
≈ 52.3. (34)

A second timescale is given by the energy differences between other low-lying energy
levels. This can also be seen in figure 4, where the initial state is|α = 2〉. Here we used two
different kinds of propagator matrices: for both we used an elementary time step1t = 2π/512,
and we squared these propagators five and ten times, therefore the effective time steps are 321t

and 10241t , respectively. Every 32nd point of the discretized trajectory calculated with the
smaller time step coincides with a point calculated with the longer time step, even after a long
total propagation time. This shows that repeated matrix multiplication is stable. To demonstrate
this more clearly, we propagated an initial state|ψ〉 by different propagators: As a reference
state we propagated|ψ〉 by the plain propagatorP(t/N) to get|ψ0(T )〉 afterk vector–matrix
multiplications (whereT = kt/N ), a second state we get by first squaring the plain propagator
ν-times, which means an effective step size1t ′ = 2ν t/N and then doingk/2ν vector–matrix
multiplications to get a state|ψν(T )〉. For demonstrating the consistency of both results, we
calculated the overlapCν(T ) = 〈ψ0(T )|ψν(T )〉 between the final states obtained by the two
procedures. As an elementary time step we took1t = 2π/256 and propagated the initial state
|α = 2〉 219 times to get the reference state|ψ0(T )〉, thereforeT = 4096π (approximately 246
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Figure 5. Morse potentialV (x) = A(1 − exp(−λx))2
with A = 10 andλ = 1/

√
20 (energies are measured

in units of h̄ω, lengths in units of
√
h̄/mω). Main plot:

real part ReA(ω) of the spectrum of the autocorrelation
function 〈ψ(0)|ψ(t)〉 with initial state|ψ(0)〉 = |α = 3〉.
The total propagation time isT = 131 072π/125, therefore
the spectral resolution is1ω = 125π/131 072≈ 0.003.
Within this accuracy the peaks coincide with the exact
eigenvalues (♦). Inset: shows the lowest peak of the
spectrum; its position isE0 = 79

160. Technical data:
M = 17, NCSPI,1t = 2π/2000,1t ′ = 1281t , tenth-
order expansion.

tunnelling periods). Forν = 1, 2, 3, . . . the final states|ψν(T )〉 were calculated as described
above, and theCν values are shown in table 1. The norms of the final states differ slightly
from unity, but the overlapsCν(T ) agree with‖|ψν(T )〉‖2 to high precision. That indicates
that the propagation over a long time indeed causes a slight loss of probability, but that loss
is not related to the effective time step size. We conclude that repeated matrix multiplication
does not affect the accuracy, and is therefore stable. This offers the opportunity of working
with a rather long time step whenever fine resolution in time is not essential.

Table 1. Double-well potential (see figure 2). The overlapsCν(T ) = 〈ψ0(T )|ψν(T )〉 for different
ν are shown (for explanations refer to the text). Although the norms (5th column) of all final states
deviate significantly from 1, theCν do not depend onν and the real parts of theCν are equal to
the squares of the norms, showing that the results for different repeatedly squared propagators are
consistent with each other. The precision can be improved by using a smaller time step1t . In the
second column the effective time step1t ′ = 2ν1t is given. Technical data:M = 13, NCSPI,
1t = 2π/256, fourth-order expansion, total propagation timeT ≈ 4096π . The initial state was
|α = 2〉.
ν 1t ′ ReCν(T ) ImCν(T ) ‖|ψν(T )〉‖
0 0.024 544 00 0.984 7179−3.010 427× 10−20 0.992 3295
1 0.049 088 00 0.984 7189 4.786 793× 10−8 0.992 3306
2 0.098 176 00 0.984 7194 4.600 942× 10−8 0.992 3311
3 0.196 352 0 0.984 7196 4.650 630× 10−8 0.992 3314
4 0.392 704 0 0.984 7197 4.633 073× 10−8 0.992 3315
5 0.785 408 0 0.984 7197 4.612 626× 10−8 0.992 3316
6 1.570 816 0.984 7197 4.633 432× 10−8 0.992 3316
7 3.141 632 0.984 7197 4.633 546× 10−8 0.992 3316
8 6.283 264 0.984 7197 4.636 670× 10−8 0.992 3316

10 12.566 53 0.984 7197 4.636 517× 10−8 0.992 3316
11 25.133 06 0.984 7197 4.638 332× 10−8 0.992 3316
12 50.266 11 0.984 7197 4.638 827× 10−8 0.992 3316
13 100.532 2 0.984 7197 4.640 010× 10−8 0.992 3316
14 201.064 5 0.984 7197 4.639 162× 10−8 0.992 3316
15 402.128 9 0.984 7197 4.639 972× 10−8 0.992 3316
16 804.257 8 0.984 7197 4.640 011× 10−8 0.992 3316



2086 B Burghardt and J Stolze

Table 2. Norm of the state|ψ(t)〉 was taken after a propagation timet ≈ 1600 (depending on
the multiple of1t ′) in a Morse potential (see figure 5 for parameters), using the normal ordered
coherent-state path integral. Different step sizes1t and different ordersn0 of the series expansion
of the anharmonic time evolution operator were used. The asterisk marks a numerical overflow
after a small propagation time (e.g.t ≈ 18). Technical data:M = 15, NCSPI,|ψ(0)〉 = |α = 2〉,
1t ′ = 271t .

Step size1t

n0 2π/1024 2π/1536 2π/2048

3 ∗ ∗ 0.971 4917
4 ∗ 0.999 3492 0.999 2865
6 ∗ 0.999 3756 0.999 2927
8 ∗ 0.999 3756 0.999 2931

10 ∗ 0.999 3756 0.999 2927

5.2. Morse potential

As a second example we consider the Morse potential (equation (28)), which has been widely
used as a model for the vibrations of molecules (Braunet al 1996). The Morse potential
(Landau and Lifshitz 1958) has only a finite number of bound states with energy eigenvalues

Eν = −Ah̄ω
{[

1− λ√
2A

(
ν +

1

2

)]2

− 1

}
where 06 ν <

√
2A

λ
− 1

2
. (35)

To demonstrate the practical value of our method, we chose the parameters such that the
potential has only a few bound states:A = 10, λ = 1/

√
2A = 1/

√
20, therefore we

have 20 discrete eigenvalues. This choice of parameters means that the potential is strongly
anharmonic, and we are far from treating the harmonic oscillator. This can be seen in
figure 5, where we show the spectrum obtained from long-time propagation of an initial state
|α = 3〉. The deviation from the harmonic spectrumEν/h̄ω = 1

2,
3
2,

5
2, . . . compared with

Eν/h̄ω = 79
160,

231
160,

75
32,

511
160,

639
160, . . . is obvious, while the agreement with the exact values is as

good as the precision of the spectrum. Also worth mentioning is the revival (Averbukh and
Perelman 1989, Meier and Engel 1995) of the initial state after a revival timeTrev ≈ 125.66,
visible in figure 6, where the autocorrelation climbs up to almost the maximum value of unity
after Trev. This revival time is due to the fact that the initial state|ψ0〉 = |α = 3〉 can be
approximated by a superposition of the eigenstates|ν = 3〉, |ν = 4〉, and|ν = 5〉:

|ψ(t)〉 ≈
5∑
ν=3

aνe
−iEνt |ν〉. (36)

Considering this, the autocorrelation function is given to a good approximation by

〈ψ(0)|ψ(t)〉 ≈ e−iE3t (|a3|2 + |a4|4e−i(E4−E3)t + |a5|2e−i(E5−E3)t ). (37)

As one can immediately see, the modulus of this correlation function reaches its maximum
value at timest , when both(E4 − E3)t/2π and(E5 − E3)t/2π are integers; therefore the
revival time isTrev = 40π ≈ 125.66.

To demonstrate the dependence of the precision on the grid size, we propagated an initial
state with different grid sizes, and traced the norm of the state. From figure 7, it can be seen
that the smaller the grid is the faster the norm decays. This behaviour is as one expectsa
priori , because if the grid does not cover the physically relevant part of theα-plane, important
contributions to the wavepacket will get lost. Another point to mention is the dependence of
accuracy on the type of path integral used, either normal- or antinormal-ordered. In tables 2
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Figure 6. Morse potential (see figure 5 for parameters).
Modulus of the autocorrelation function〈ψ(0)|ψ(t)〉
with initial state|ψ(0)〉 = |α = 3〉. After a timeTrev ≈
125 the system almost returns to its initial state; this
behaviour is called a revival. Technical data:M = 17,
NCSPI,1t = 2π/2000, 1t ′ = 1281t , tenth-order
expansion.

Figure 7. Morse potential (see figure 5 for parameters).
Norms of the propagated states|ψ(0)〉 = |α = 3〉 and
|ψ(0)〉 = |α = 2〉 for different grid sizes. For the
initial state|ψ(0)〉 = |α = 3〉 even the largest grid size
(M = 15, full curve) leads to a significant leakage of the
norm, while for the state|ψ(0)〉 = |α = 2〉, starting well
inside the integration area, even a grid size ofM = 13
(broken curve) is better than the above one. Dotted
curve: |ψ(0)〉 = |α = 3〉, M = 9. Dot-dashed curve:
|ψ(0)〉 = |α = 2〉, M = 9. Technical data: NCSPI,
1t = 2π/2048,1t ′ = 2561t , tenth-order expansion.

Table 3. The same as table 2, but for antinormal ordered coherent-state path integral. Higher order
allows the use of bigger time steps, while smaller time steps do not guarantee higher accuracy.
Technical data:M = 15, ACSPI,|ψ(0)〉 = |α = 2〉,1t ′ = 271t .

Step size1t

n0 2π/790 2π/800 2π/1024 2π/2048

3 ∗ ∗ ∗ 0.971 4917
4 ∗ ∗ 0.999 3114 0.999 3010
6 ∗ 0.999 5818 0.999 5128 0.999 3072
8 0.999 5850 0.999 5816 0.999 5128 0.999 3072

10 0.999 5850 0.999 5864 0.999 5128 0.999 3072

and 3 we show the norm of the propagated state after a total propagation time of 1600 time
units. We used different elementary time steps1t , different orders for the propagator and
both kinds of symbols. As one can see from the results for normal-ordered symbol, a big
time step1t gives numerical non-sense; in fact, a numerical overflow appears after only a few
propagation steps. On the other hand a smaller time step does not guarantee a higher accuracy,
because a smaller time step means more multiplications to reach the same total propagation
time, increasing the influence of numerical noise. But as one also can see from table 3, a higher
order in the series expansion of the symbol of exp(− i

h̄
1tṼ ) permits a bigger time step1t ; in

fact, order eight gives about the accuracy as does order four, with a time step half as big.
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In comparison with configuration space techniques, we need fewer grid points†. This
might be understood from the fact that coherent states already bear the right amount of
quantum fluctuations, whereas configuration space methods have to mimic these fluctuations
by sampling over manyδ-functions (or plane waves).

6. Conclusions

We presented a first systematic study of the numerical applicability of coherent-state path
integrals to one-dimensional (standard) Hamiltonians in quantum dynamics. For doing CSPI
an approximation of the propagator in terms of (anti-)normal symbols is required; we chose a
Taylor expansion‡ of the exponential. That requires the (anti-)normal ordering of powers of
the Hamiltonian which we reduced further to the (anti-)normal ordering of the potential only by
the split-operator technique. The wavepacket is represented on a grid of points in the complex
plane, and the time propagation of the wavefunction is done by a vector–matrix multiplication.
We have achieved stable propagation over very long times, and we have shown that one can
get an effective matrix propagator with an effective time step much larger than the elementary
time step by repeated matrix multiplication without losing accuracy. We have also applied our
method to time-dependent problems, for example to the motion of a particle in a sinusoidally
driven double well (Burghardt and Stolze 1999). For a particular combination of driving
amplitude and frequency the tunnelling motion of the particle can be dynamically suppressed
(Grossmanet al 1991). The observation of this ‘coherent destruction of tunnelling’ requires
stable propagation of the initial state over time intervals still longer than those considered here.

We have restricted our study to bound motion in simple well-type potentials. We wish
to stress that this is not a principal restriction. An initially localized wavepacket may be
followed for some limited time even in a non-confining potential, until it eventually leaves
(partially or completely) the finite grid used in a numerical calculation. This is true for both
coordinate-space and phase space methods. However, genuine scattering problems involving
final wavepackets at infinity should be treated by more appropriated methods.

The matrix multiplication (MM) approach discussed in this paper is limited to low-
dimensional systems, because the size of the matrices involved grows exponentially with
the dimension. It is therefore interesting to discuss MC evaluation of CSPI as an alternative,
potentially less dimension-limited scheme. The split-operator approximation for the short-time
propagator developed in section 3 may be incorporated in a MC path integration scheme. This
was demonstrated by Marchioro and Beck (1992) for a similar (but less accurate) propagator.
The main limitation of the MC approach concerns the size of the time step. In the MM approach,
one may construct an effective propagator matrix corresponding to a very long effective time
step, as discussed in section 4 and demonstrated in section 5. This is not possible in the MC
approach, where one is forced to stick to the elementary time step restricted by the precision of
the elementary propagator§. In contrast to MM, the MC approach in higher dimensions is not
impeded by a rapidly growing demand for computer memory. However, in order to obtain data
with a prescribed statistical precision, a rapidly growing number of paths have to be sampled
as the dimension (or the total propagation time) grows. Thus, employing MC instead of MM
methods means trading cpu time for memory, a situation quite familiar for major computer

† For example, we used 729 grid points in theα-plane (M = 13) for the Morse potential with the same parameter
values as in Braunet al (1996), while the authors of that reference used 2048 grid points on the realx-line.
‡ Alternative options well worth studying would include cumulant expansions or expansions in a Chebyshev series,
both of which have in fact been employed in other wavepacket propagation algorithms.
§ If the dimension is not too high, however, one might think of ‘hybrid’ methods evaluating (by MC) sums over paths
on a fixed lattice of phase space points, with an effective propagator matrix calculated once and for all by MM.



Numerical evaluation of coherent-state path integrals 2089

applications in science. Finally, we want to remark that, even though MM methods, in contrast
to MC methods, are restricted to low-dimensional systems, there are still many interesting low-
dimensional problems being investigated by non-MC propagation methods (Saalfrank 1996,
Grossmanet al 1991).

We have demonstrated that numerical evaluation of CSPI can be significantly improved
as compared with the pioneering studies (Marchioro 1990, Marchioro and Beck 1992), and we
believe that application of some of the ideas which were successfully used for configuration
space path integrals (smoothing techniques based on stationary-phase ideas, Fourier coefficient
path integration etc) holds the potential for further significant improvement of CSPI as a
numerical tool.

Modern configuration-space-based wavepacket propagation methods often employ fast
Fourier transforms to switch between coordinate and momentum representations. This makes
these methods more efficient than matrix multiplication methods based on the coordinate grid.
However, our method needs fewer grid points for the discretized wavefunction, and therefore
it will be interesting to find out if our method (or future refinements of it) can compete with
other propagation methods in practice.
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